Other products were (CF₃)₂PSH (0.022 g, 0.11 mmole), excess (CF_a)₂PH (0,209 g, 1.23 mmoles), both identified by their infrared spectra, and a small amount of H₂S, identified by mass spectrometry and the characteristic reaction with lead acetate.

(b) Reaction of $(CF_3)_2$ PSH with Sulfur. The mercaptophosphine (0.311 g, 1.54 mmoles) reacted with sulfur (1 g) after 36 hr at 160° to give a small amount (0.06 mmole) of a volatile material (shown not to be H₂S), unreacted (CF₃)₂PSH (0.012 g, 0.06 mmole), and the phosphinic acid, (CF₃)₂P(S)SH (0.313 g, 1.34 mmoles), which was trapped at -63° . Anal. Calcd for C₂HF₆PS₂: m/e (mass spectrometer), 233.9161; CF₃ liberated on alkaline hydrolysis, 29.5%; mol wt, 234. Found: m/e, 233.9159; CF₃, 29.6%; mol wt, 237. The main bands in the infrared spectrum were at 2580 w, 2565 (sh) w, 1280 w, 1208 vs, 1178 vs, 846 m, 760 m, 730 s, 573 m, 519 m, 472 m cm⁻¹. Samples of the dithiophosphinic acid prepared from the reaction of (CF3)2PSH and sulfur were examined by fluorine nmr for $(CF_3)_2 PSP(CF_3)_2$ which is readily identified by its strong and characteristic spectrum.²⁵ At the highest gain only resonances due to the phosphinic acid were observed indicating that there was certainly less than 0.25% of the bis(phosphino) sulfide impurity present.

Preparation of CF₃PF(S)N(CH₃)₂. The dimethylaminophosphine, CF₃PFN(CH₃)₂ (0.460 g, 2.82 mmoles), prepared from CF3PF2 and (CH3)2NH,28 was sealed in an evacuated tube with sulfur (1 g) and heated at 180° (6 days). The phosphine sulfide, CF₃PF(S)N(CH₃)₂ (0.235 g, 1.21 mmoles), was isolated by vacuum fractionation. Anal. Calcd for $C_3H_6F_4NPS: m/e$ (mass spectrometer), 194.9895; mol wt, 195. Found: m/e, 194.9891; mol wt, 192. No CF₃H was liberated on alkaline hydrolysis, as expected. The infrared spectrum showed absorption at 3020 w, 2950 m, 2915 (sh) w, 2870 w, 2825 w, 1455 w, 1318 m, 1212 vs, 1166 vs, 1149 vs, 1078 w, 1010 vs, 890 vs, 786 s, 750 (sh) w, 653 s, 474 m cm⁻¹.

Preparation of F₂P(S)N(CH₃)₂. PF₂N(CH₃)₂ (0.116 g, 1.03 mmoles) and sulfur (1 g) were allowed to react for 5 days at 150°. Vacuum fractionation gave F₂P(S)N(CH₃)₂ (0.131 g, 0.90 mmole), identified by its infrared, nmr, and mass spectra.¹² A more volatile fraction was shown by infrared spectroscopy to contain PF₃, F₃P=S, and a trace of SiF₄.

Acknowledgment. We thank Dr. A. Hogg and Mr. A. Budd for assistance with the mass spectral measurements and The National Research Council of Canada and The Defence Research Board of Canada for financial support.

(28) J. F. Nixon and R. G. Cavell, J. Chem. Soc., 5893 (1964).

High-Pressure–High-Temperature Syntheses. III. Direct Syntheses of New High-Pressure Forms of LiAlO, and LiGaO₂ and Polymorphism in LiMO₂ Compounds $(M = B, Al, Ga)^{1a}$

C. H. Chang and J. L. Margrave

Contribution from the Department of Chemistry, Rice University, Houston, Texas 77001. Received July 21, 1967

Abstract: New high-pressure polymorphs, β -LiAlO₂ and β -LiGaO₂, have been synthesized in an opposed-anvil press at 18 kbars, 370° and 18 kbars, 420°, respectively. These new high-pressure forms are isostructural. Debye-Scherrer powder patterns have been indexed on the basis of monoclinic structures and indicate the lattice parameters $\alpha = 8.147$ Å, b = 7.941 Å, c = 6.303 Å, $\beta = 93.18^{\circ}$ for β -LiAlO₂ and a = 8.110 Å, b = 8.065 Å, c = 6.422Å, $\beta = 94.56^{\circ}$ for β -LiGaO₂. Infrared absorption spectra suggest that aluminum and gallium in these new phases have both coordination numbers four and six. A consistent nomenclature for the system $LiMO_2$ (M = B, Al, Ga) is proposed and used.^{1b} The polymorphs of LiMO₂ include three phase types: (1) the α phases, prepared at normal pressures (M^{3+} exhibits a low coordination number: three for boron or four for aluminum); (2) the γ forms synthesized at high pressures and temperatures (M³⁺ has a high coordination number: four for boron and six for aluminum); and (3) the β forms, prepared at intermediate pressures and temperatures (M³⁺ exhibits both coordination numbers).

Two crystalline forms of LiAlO_2 have been reported. I The first form $(\alpha$ -LiAlO₂) was prepared at normal pressure, ² and it is tetragonal with a = 5.169 Å and c =6.268 Å with all cations tetrahedrally coordinated.³⁻⁵ The second crystalline form of LiAlO₂ was obtained first by Lehmann and Hesselbarth⁶ at 600°, and recently by Marezio and Remeika,⁷ at 35 kbars and 850°. This hexagonal form, γ -LiAlO₂, has a = 2.801 Å and c =14.214 Å and all cations are octahedrally bonded.⁸

There are also two crystalline forms of LiGaO₂ which have been synthesized at normal pressure and temperature; α -LiGaO₂ crystallizes in an orthorhombic structure with a = 5.402 Å, b = 6.372 Å, and c = 5.007Å.^{9,10} By subjecting the low-pressure form to a pressure of 30 kbars and a temperature of 850°, Marezio and Remeika¹¹ obtained a high-pressure phase, γ -LiGaO₂, with a hexagonal unit cell of a = 2.9113 Å and c = 14.466 Å. The most important difference between these two phases is that, in the low-pressure form, the coordination number of Ga, paralleling that of Al in

^{(1) (}a) Extracted, in part, from the Ph.D. thesis of C. H. Chang, submitted to the faculty of Rice University, May 1967. (b) The new nomenclature described in the abstract is used throughout the paper.

^{(2) (}a) R. A. Hatch, Am. Mineralogist, 28, 471 (1953); (b) F. A. Hummel, J. Am. Ceram. Soc., 34, 235 (1951).

⁽³⁾ J. Thery, A. M. Lejus, D. Bariancon, and R. Collonges, Bull. Soc. Chim. France, 973 (1961).

⁽⁴⁾ E. F. Bertaut, A. Delapalme, G. Bassi, A. Durif-Varambon, and
J. C. Joubert, Bull. Soc. Franc. Mineral. Crist., 88, 103 (1965).
(5) M. Marezio, Acta Cryst., 59, 396 (1965).

⁽⁶⁾ H. A. Lehmann and H. Hesselbarth, Z. Anorg. Allgem. Chem., 313, 117 (1961).

⁽⁷⁾ M. Marezio and J. P. Remeika, J. Chem. Phys., 44, 3143 (1966).

⁽⁸⁾ A. M. Lejus and R. Collongues, Compt. Rend., 254, 2005 (1962).
(9) R. Hoppe, Angew. Chem., 71, 457 (1959).
(10) M. Marezio, Acta Cryst., 18, 481 (1965).

⁽¹¹⁾ M. Marezio and J. P. Remeika, J. Phys. Chem. Solids, 26, 1277 (1965).

Figure 1. Infrared spectra of (a) γ -LiAlO₂, (b) β -LiAlO₂.

low-pressure LiAlO₂, is four while in the high-pressure form it is six.

Since the coordination number of Ga^{3+ 11} or Al^{3+ 12} can be a mixture of four and six in oxide compounds, it is quite reasonable to speculate that a third form with mixed coordination, paralleling β -LiBO₂,¹³ may exist for both $LiAlO_2$ and $LiGaO_2$.

Experimental Section

Syntheses of these new phases were performed in a Tem-press SJ-100 opposed-anvil device.14 Various mixtures of lithium peroxide, Li_2O_2 , and M_2O_3 (M = Al, Ga) were prepared. Samples were contained in the pyrophyllite high-pressure cell and covered with Ta foils to separate them from the anvils. By subjecting the mixtures to a pressure of 18 kbars and temperatures of 370 and 420° for Al₂O₃ and Ga₂O₃, respectively, for a period of 10 hr, two new high-pressure phases were obtained after quenching.

The new high-pressure phases of LiAlO2 could also be synthesized by pressing a 2:1 molar mixture of Li₂O₂ and aluminum nitride, AlN, at 22 kbars and 550° for 11 hr. It was found that, when the mixture of Li₂O₂ and Al₂O₃ was allowed to react at 25 kbars and 530°, the γ -LiAlO₂ was synthesized directly. Instead of the γ form of LiGaO2, however, LiGa5O8 was obtained after heating the mixure of Li_2O_2 and Ga_2O_3 at 34 kbars and 820° for 4 hr.

Results and Discussions

LiAlO₂. The X-ray powder photographs of various LiAlO₂ phases were taken at room temperature in a Norelco 114.6-mm camera with Ni-filtered, Cu K α radiation at 35 kV and 18 mA. The patterns of the lowpressure (α) and the high-pressure (γ) LiAlO₂ forms are the same as obtained previously,^{2,6,7} while the new β phase pattern indicates a less symmetrical lattice. The β pattern has been indexed on the basis of a monoclinic structure with cell dimensions a = 8.147 Å, b = 7.941Å, c = 6.303 Å, and $\beta = 93.18^{\circ}$ as shown in Table I. This behavior parallels the HBO₂ and LiBO₂ systems,¹³ and suggests the presence of Al in sites with different coordination numbers.

Infrared absorption spectra were obtained on a Beckman IR9 infrared spectrophotometer by using the KBrdisk technique. As show in Figure 1, the distinctive band at 740 cm⁻¹ for γ -LiAlO₂ corresponds to an Al–O stretching frequency with Al octahedrally coordinated, and no absorption in the range 800-900 cm⁻¹, char-

- (12) P. Tarte and R. Collongues, Ann. Chim., 9, 135 (1964).
 (13) C. H. Chang and J. L. Margrave, Mater. Res. Bull., 2, 929 (1967).
 (14) C. H. Chang, Ph.D. Thesis, Rice University, 1967.

Figure 2. Infrared spectra of (a) $LiGa_{5}O_{8}$, (b) β -LiGaO₂.

acteristic of the AlO₄ group,^{15,16} is seen. This is consistent with the conclusions obtained from X-ray data⁸ that all aluminum ions are octahedrally coordinated in γ -LiAlO₂.

Table I. X-Ray Diffraction Pattern of Newly Synthesized β -LiAlO₂^a

hkl	Rel intensity ^b	2θ	dobad	$d_{\rm calcd}$
200	s	21.92	4.05	4.068
020	S	22.98	3.87	3.914
002	w	28,57	3.12	3.146
300	s	33.10	2,706	2.712
030	m	33.97	2.639	2.647
022	S	36,65	2.452	2.467
212	w	38,00	2.368	2.344
230	VVŴ	41.46	2.178	2.129
003	vw	43.17	2.096	2.097
023	w	50,17	1.8183	1.8553
240	vw	50.78	1.7979	1.7844
340	vw	57.45	1,6040	1.6023
004	w	58.56	1.5762	1.5730
014	m	60.14	1,5385	1.5449
440	w	66.72	1.4019	1.4213
$30\overline{4}$	vw	67,34	1.3905	1.3951
304	w	72.55	1.3029	1.3004
	•	9		

 $a = 8.147 \text{ Å}, b = 7.941 \text{ Å}, c = 6.303 \text{ Å}, \beta = 93.18^{\circ}, b \text{ s}, b \text{ s}$ strong; m, medium; w, weak; v, very; vv, very very.

The occurrence of absorption bands from 725 to 900 cm⁻¹ in the spectrum of the new phase, in contrast with γ -LiAlO₂, suggests a mixture of octahedral and tetrahedral coordination of the aluminum ions. On this basis, the new phase indeed parallels β -LiBO₂ with the group III element showing two coordination numbers in the crystal.

Marezio and Remeika¹⁷ reported the $\gamma \rightarrow \alpha$ transition in their sample after heating overnight at 600° in the air. In this work, both γ -LiAlO₂ and the new β phase were heated in platinum crucibles at 710° for 3 days, but no low-pressure phase was found. Thus, the reverse transition appears to be slow.

LiGaO₂. The new β form of LiGaO₂ is isostructural with the β -LiAlO₂. Debye–Scherrer powder pat-

- (15) V. A. Kolesova, Opt. i Spektroskopiya, 10, 414 (1961).
 (16) V. A. Kolesova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 2082
- (1962)
- (17) M. Marezio and J. P. Remeika, J. Chem. Phys., 44, 3348 (1966).

Table II.X-Ray Diffraction Pattern of NewlySynthesized β -LiGaO2^a

	Dal			
hkl	intensity ^b	20	$d_{ m obsd}$	$d_{\rm calcd}$
200	S	21,78	4.08	4.042
020	\$	22,83	3.90	4.032
002	w	28.25	3.16	3.201
300	m	32.77	2.73	2.695
030	w	33.32	2.69	2.688
022	S	35.98	2,50	2.507
$20\overline{2}$	m	37.49	2.399	2.396
131	w	37.95	2.371	2.390
230	vw	40.63	2,220	2.239
003	m	42.28	2.138	2.134
401	vw	45.96	1.9746	1.9732
140	vw	46.47	1.9541	1.9562
331	w	49.27	1,8494	1.8518
411	w	49.63	1.8368	1.8352
402	w	51.87	1.7627	1.7730
033	vw	54.99	1.6698	1.6714
422	m	56.18	1.6372	1.6239
430	vw	57.01	1.6153	1.6154
004	w	57.83	1.5944	1.6005
014	m	58.88	1.5684	1.5698
$10\overline{4}$	vw	59.59	1.5514	1.5468
143	w	64.18	1.4511	1.4562
304	m	65.42	1.4266	1.4269
413	vw	67.45	1.3885	1.3912
134	vw	68.33	1.3727	1.3714
600	w	69.83	1.3469	1.3473
304	m	70.83	1.3303	1.3305
		9		

 $^{a}a = 8.110$ Å, b = 8.065 Å, c = 6.422 Å, $\beta = 94.56^{\circ}$. ^b See footnote b, Table I.

Table III. Polymorphism of HBO2 and LiMO2 Compounds

polymorph was originally called β -LiGaO₂,¹¹ following the nomenclature used in the NaFeO₂ system.

Since the polymorphism of LiMO₂ species is analogous to that of HBO₂ as will be discussed in the next section, a nomenclature similar to that of HBO₂, as suggested by Marezio and Remeika¹⁷ for LiBO₂, should be used for all LiMO₂ compounds. On the basis of this new nomenclature, the new phases reported are β -LiAlO₂ and β -LiGaO₂, the other two high-pressure forms are γ -LiAlO₂ and γ -LiGaO₂, and the normal pressure forms are α -LiAlO₂ and α -LiGaO₂.

Thus, the polymorphs of LiMO₂ compounds (M = B, Al, Ga) include three structures: an α form prepared at normal pressures and temperatures, in which all metal ions M³⁺ show trigonal (B) or tetrahedral (Al, Ga) coordination; a γ form, prepared at highest pressures, in which all metal ions M³⁺ show tetrahedral (B) or octahedral (Al, Ga) coordination; and a β form, prepared under intermediate conditions, in which the metal ions show both types of coordination, analogous to the β -HBO₂ system.

Because of the complexity arising from the metal ions occupying two types of coordination sites, the lattices of the β forms have lower symmetry than those of the corresponding α and γ forms, as shown in Table III. The high-pressure γ forms crystallize in the lattices of highest symmetries.

The various forms of LiMO₂ can be synthesized

	α phases		β phases		γ phases $$		· · · · · · · · · · · · · · · · · · ·
Compound	Lattice structure	CN^a	Lattice structure	CNª	Lattice structure	CNª	Ref
HBO ₂	Orthorhombic	3	Monoclinic	3, 4	Cubic	4	13
LiBO ₂	Monoclinic	3	Unknown, probably triclinic	3, 4	Tetragonal	4	13
LiAlO ₂	Tetragonal	4	Monoclinic	4,6	Hexagonal	6	This work
LiGaO2	Orthorhombic	4	Monoclinic	4, 6	Hexagonal	6	This work

 a CN = coordination number.

terns of both of the high-pressure forms of LiGaO₂ were obtained, and the β -LiGaO₂ pattern could be indexed on the basis of a monoclinic structure with a = 8.110 Å, b = 8.065 Å, c = 6.422 Å, and $\beta = 94.56^{\circ}$ as shown in Table II. The absorption spectrum (Figure 2) bears a resemblance to that of β -LiAlO₂. The absorption from 625 to 750 cm⁻¹ is from GaO₄ groups, while that in the region 475-600 cm⁻¹ is from GaO₆ groups. Also shown in Figure 2 is the spectrum of LiGa₅O₈ in which Ga occupies both tetrahedral and octahedral sites.¹⁸

Nomenclature. The nomenclature presently in the literature for LiMO₂ compounds does not have a unique basis; therefore, it is quite easy to be confused and misled. For example, the low-pressure form of LiBO₂ was called the α phase, that of LiAlO₂ was labeled the γ form, while the corresponding LiGaO₂

(18) J. C. Joubert, M. Brunel, A. Waintal, and A. Durif, Compt. Rend., 256, 5324 (1963).

Table IV. The Direct Syntheses of High-Pressure LiMO₂ Phases

LiMO ₂	β phase	γ phases	Ref
LiBO2	15 kbars, 230°	18 kbars, 370°	13
LiAlO2	18 kbars, 370°	25 kbars, 530°	This work
LiGaO2	18 kbars, 420°	30 kbars,ª 850°	This work

^a $\alpha \rightarrow \gamma$ transition reported by Marezio and Remeika;¹¹ in this work, the compound LiGa₂O₅ was found at 34 kbars and 820°.

directly through the following general reaction

 $Li_2O_2(s) + M_2O_3(s) \longrightarrow 2LiMO_2(s) + 0.5O_2(g)$

under conditions of high pressure and high temperature as summarized in Table IV.

Acknowledgment. This work was supported financially by funds administered through the office of Dr. George Wyman of the Chemistry Division of the U. S. Army Research Office, Durham.